On the Vanishing of Selmer Groups for Elliptic Curves over Ring Class Fields

نویسنده

  • MATTEO LONGO
چکیده

Let E/Q be an elliptic curve of conductor N without complex multiplication and let K be an imaginary quadratic field of discriminant D prime to N . Assume that the number of primes dividing N and inert in K is odd, and let Hc be the ring class field of K of conductor c prime to ND with Galois group Gc over K. Fix a complex character χ of Gc. Our main result is that if LK(E,χ, 1) 6= 0 then Selp(E/Hc) ⊗χ W = 0 for all but finitely many primes p, where Selp(E/Hc) is the p-Selmer group of E over Hc and W is a suitable finite extension of Zp containing the values of χ. Our work extends results of Bertolini and Darmon to almost all non-ordinary primes p and also offers alternative proofs of a χ-twisted version of the Birch and Swinnerton-Dyer conjecture for E over Hc (Bertolini and Darmon) and of the vanishing of Selp(E/K) for almost all p (Kolyvagin) in the case of analytic rank zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit Heegner Points: Kolyvagin’s Conjecture and Non-trivial Elements in the Shafarevich-Tate Group

Kolyvagin used Heegner points to associate a system of cohomology classes to an elliptic curve over Q and conjectured that the system contains a non-trivial class. His conjecture has profound implications on the structure of Selmer groups. We provide new computational and theoretical evidence for Kolyvagin’s conjecture. More precisely, we explicitly compute Heegner points over ring class fields...

متن کامل

On the elliptic curves of the form $ y^2=x^3-3px $

By the Mordell-Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎There is no known algorithm for finding the rank of this group‎. ‎This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves‎, ‎where p is a prime‎.

متن کامل

Elliptic Curves with Complex Multiplication and the Conjecture of Birch and Swinnerton-Dyer

1. Quick Review of Elliptic Curves 2 2. Elliptic Curves over C 4 3. Elliptic Curves over Local Fields 6 4. Elliptic Curves over Number Fields 12 5. Elliptic Curves with Complex Multiplication 15 6. Descent 22 7. Elliptic Units 27 8. Euler Systems 37 9. Bounding Ideal Class Groups 43 10. The Theorem of Coates and Wiles 47 11. Iwasawa Theory and the “Main Conjecture” 50 12. Computing the Selmer G...

متن کامل

Bounding Cubic-triple Product Selmer Groups of Elliptic Curves

Let E be a modular elliptic curve over a totally real cubic field. We have a cubic-triple product motive over Q constructed from E through multiplicative induction; it is of rank 8. We show that, under certain assumptions on E, the non-vanishing of the central critical value of the L-function attached to the motive implies that the dimension of the associated Bloch–Kato Selmer group is 0.

متن کامل

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009